p-group, metabelian, nilpotent (class 3), monomial
Aliases: C23.19D4, C2.D8⋊7C2, C22⋊C8⋊7C2, C4.Q8⋊10C2, (C2×C4).106D4, C4⋊D4.7C2, D4⋊C4⋊13C2, C42⋊C2⋊5C2, C4.31(C4○D4), C2.15(C4○D8), C4⋊C4.65C22, (C2×C8).38C22, C2.18(C8⋊C22), (C2×C4).107C23, (C2×D4).23C22, C22.103(C2×D4), (C22×C4).53C22, C2.13(C22.D4), SmallGroup(64,163)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C2 — C4 — C2×C4 — C4⋊C4 — C42⋊C2 — C23.19D4 |
Generators and relations for C23.19D4
G = < a,b,c,d,e | a2=b2=c2=e2=1, d4=c, dad-1=ab=ba, ac=ca, eae=abc, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede=bcd3 >
Character table of C23.19D4
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 8A | 8B | 8C | 8D | |
size | 1 | 1 | 1 | 1 | 4 | 8 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 8 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | -2 | 0 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ12 | 2 | -2 | 2 | -2 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ13 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 2i | 0 | 0 | -2i | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ14 | 2 | -2 | 2 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | -2i | 0 | 0 | 2i | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ15 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √-2 | -√-2 | complex lifted from C4○D8 |
ρ16 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√-2 | √-2 | complex lifted from C4○D8 |
ρ17 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√-2 | √-2 | complex lifted from C4○D8 |
ρ18 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √-2 | -√-2 | complex lifted from C4○D8 |
ρ19 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
(1 30)(2 13)(3 32)(4 15)(5 26)(6 9)(7 28)(8 11)(10 21)(12 23)(14 17)(16 19)(18 25)(20 27)(22 29)(24 31)
(1 23)(2 24)(3 17)(4 18)(5 19)(6 20)(7 21)(8 22)(9 27)(10 28)(11 29)(12 30)(13 31)(14 32)(15 25)(16 26)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(2 22)(3 7)(4 20)(6 18)(8 24)(9 11)(10 28)(12 26)(13 15)(14 32)(16 30)(17 21)(25 31)(27 29)
G:=sub<Sym(32)| (1,30)(2,13)(3,32)(4,15)(5,26)(6,9)(7,28)(8,11)(10,21)(12,23)(14,17)(16,19)(18,25)(20,27)(22,29)(24,31), (1,23)(2,24)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,27)(10,28)(11,29)(12,30)(13,31)(14,32)(15,25)(16,26), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (2,22)(3,7)(4,20)(6,18)(8,24)(9,11)(10,28)(12,26)(13,15)(14,32)(16,30)(17,21)(25,31)(27,29)>;
G:=Group( (1,30)(2,13)(3,32)(4,15)(5,26)(6,9)(7,28)(8,11)(10,21)(12,23)(14,17)(16,19)(18,25)(20,27)(22,29)(24,31), (1,23)(2,24)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,27)(10,28)(11,29)(12,30)(13,31)(14,32)(15,25)(16,26), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (2,22)(3,7)(4,20)(6,18)(8,24)(9,11)(10,28)(12,26)(13,15)(14,32)(16,30)(17,21)(25,31)(27,29) );
G=PermutationGroup([[(1,30),(2,13),(3,32),(4,15),(5,26),(6,9),(7,28),(8,11),(10,21),(12,23),(14,17),(16,19),(18,25),(20,27),(22,29),(24,31)], [(1,23),(2,24),(3,17),(4,18),(5,19),(6,20),(7,21),(8,22),(9,27),(10,28),(11,29),(12,30),(13,31),(14,32),(15,25),(16,26)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(2,22),(3,7),(4,20),(6,18),(8,24),(9,11),(10,28),(12,26),(13,15),(14,32),(16,30),(17,21),(25,31),(27,29)]])
C23.19D4 is a maximal subgroup of
C24.115D4 C24.116D4 C24.117D4 C42.229D4 C42.233D4 C24.121D4 C24.124D4 C24.127D4 C24.130D4 C42.287D4 C42.292D4
(C2×D4).D2p: (C2×D4).301D4 (C2×D4).303D4 (C2×D4).304D4 C4.2+ 1+4 C4.142+ 1+4 C4.152+ 1+4 C4.162+ 1+4 C42.461C23 ...
C4⋊C4.D2p: C42.352C23 C42.355C23 C42.356C23 C42.360C23 C42.423C23 C42.425C23 C42.426C23 C4.Q8⋊S3 ...
C2p.(C4○D8): C42.384D4 C42.450D4 C42.280D4 C42.285D4 C23.18D12 C23.13D20 C23.13D28 ...
C23.19D4 is a maximal quotient of
C24.69D4 C24.74D4 C4.Q8⋊10C4 C2.D8⋊5C4 C42⋊8C4⋊C2 C4⋊C4.Q8
C4⋊C4.D2p: C24.71D4 D4⋊C4⋊C4 C4.67(C4×D4) C24.83D4 C24.84D4 (C2×C8).24Q8 D6⋊C8⋊11C2 C24⋊1C4⋊C2 ...
(C2×C8).D2p: C24.88D4 C24.89D4 (C2×C8).168D4 C23.18D12 C23.13D20 C23.13D28 ...
Matrix representation of C23.19D4 ►in GL4(𝔽17) generated by
1 | 15 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 13 | 8 |
0 | 0 | 13 | 4 |
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
13 | 0 | 0 | 0 |
13 | 4 | 0 | 0 |
0 | 0 | 0 | 11 |
0 | 0 | 3 | 11 |
1 | 0 | 0 | 0 |
1 | 16 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 1 | 16 |
G:=sub<GL(4,GF(17))| [1,0,0,0,15,16,0,0,0,0,13,13,0,0,8,4],[16,0,0,0,0,16,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,16,0,0,0,0,16],[13,13,0,0,0,4,0,0,0,0,0,3,0,0,11,11],[1,1,0,0,0,16,0,0,0,0,1,1,0,0,0,16] >;
C23.19D4 in GAP, Magma, Sage, TeX
C_2^3._{19}D_4
% in TeX
G:=Group("C2^3.19D4");
// GroupNames label
G:=SmallGroup(64,163);
// by ID
G=gap.SmallGroup(64,163);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,-2,121,199,362,50,1444,376,88]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=e^2=1,d^4=c,d*a*d^-1=a*b=b*a,a*c=c*a,e*a*e=a*b*c,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=b*c*d^3>;
// generators/relations
Export
Subgroup lattice of C23.19D4 in TeX
Character table of C23.19D4 in TeX